

The Solo Project

Whitepaper (v1.0)

Author: TyphooN (​typhoon@minesolo.com​)
www.minesolo.com

mailto:typhoon@minesolo.com
http://www.minesolo.com/

Introduction

The Solo Project’s goal is to eliminate the economic incentives that lead to
network centralization. Solo’s Proof of Work algorithm, CN-IO, requires a fully synced
copy of the blockchain on each mining node. As part of the planned future roadmap,
contributors to the Solo Project plan to research and develop additional randomization
that will adapt to changing mining solutions with the goal of maintaining solo CPU
mining as the preferred method of distribution. Presently, the CN-IO Proof of Work
Algorithm provides highly scalable performance on CPUs and ARM devices with
AES-NI crypto acceleration. Due to the low scratchpad memory allocation (128KB per
thread), performance scales very well on low to mid range devices and the PoW
algorithm draws less total power from the CPU socket as measured in software vs
similar PoW algorithms.

With advancements in the cryptocurrency landscape, Solo aims to achieve true
scalability by pursuing a scalable network all while maintaining a secured and
decentralized state. In the recent addition of the SECOR [3] tech layer, Solo has
enabled faster transactions and preserved network security and stability through uncle
mining and 20 second target block time. This provided Solo the opportunity to push
itself one step closer towards a well balanced future.

The Solo Project contributors are adamant about keeping current with all privacy

enabling and scalability impacting features that Cryptonote [2] based blockchains
benefit from. At the time of writing this whitepaper the following technologies are
enabled in mainnet: dynamic block sizing, Ring Signature Confidential Transactions
(RingCT)[4], Bulletproofs v2 [5], LWMA1 DAA (Difficulty Adjustment Algorithm with
negative timestamp vulnerability mitigation) [8] and SECOR (Uncle Block Mining) [3]
support.

The Solo community feels that a large supply with a much longer emission period

than competing blockchains is crucial for sustained growth in a decentralized blockchain
network and for the use of a cryptocurrency in everyday transactions. Rather than the
typical scenario of a rapid emission scheme within the first few months or years of a
blockchain network coming online, all XSL (Solo) will be minted over the course of 30+
years with no disruptive reward halving events.

Tokenomics

Supply & Emission Curve

Solo's ~18.4B planned supply is possible due to the
CRYPTONOTE_DISPLAY_DECIMAL_POINT value being 9 instead of the usual value
of 12 in most other cryptonote coins. The Solo community feels that a large supply,
scalability (fast block timing and SECOR support), low fees, and a long emission period
is crucial for adoption in everyday transactions. Tail emission on the Solo network will
kick in at 2095 AD and is setup to incentivize organic network growth over time as the
block reward remains high for a long period of time instead of severely reduced after
only a few years of mining found in most other privacy coins.

As Solo mining is the main method of distribution of XSL in the network, the

reward must be high enough for mining nodes to continue to mine even as difficulty
rises significantly. After the community voted prior to block 88,0001 the block reward
was increased via a hard fork so that both high and low powered machines may
participate in the network for the long run. By increasing the block reward, while still
maintaining a very slow emission rate a satisfactory reward can be found by even low to
mid range CPUs.

At the time of writing this document (August 20 2020) 18.59% of the supply has
been minted in the 1 year, 3 months, and 18 days that the Solo network has been
online. The block reward at block 2364154 was ~1193.56 XSL, the current Circulating
Supply is ~2.46B XSL of the planned ~18.4B supply before tail emission kicks in. This
is far slower than the emission schedule in both Bitcoin, Monero, and most other privacy
blockchain projects in the space.

print_coinbase_tx_sum ​0​ ​2364154
Sum ​of​ coinbase transactions ​between​ block heights [​0​, ​2364154​) ​is
3428858746.884496694​ consisting ​of​ ​3428812341.709133404​ ​in​ emissions,
and​ ​46405.175363290​ ​in​ fees

Fees and Transaction Speed

At the time of writing this document the current fee is 0.050823500 Solo per kB,

which keeps fees for most transactions at a fraction of an XSL. With Bulletproofs v2 [5]
support, low input transfers are 2-3KB which leaves the average TX fee at ~0.1-0.15
XSL. Even if the value of XSL is $1 USD or higher, the fee in fiat currency to send most
transactions will remain low when compared to the competition.

Transferred funds have a 20 block unlock period. This translates to about 6

minutes 40 seconds for funds to unlock in the recipient wallet. After funds are unlocked,
they can then be sent to another destination after that time. Compared to Monero’s 2
minute block time coupled with a 10 block unlock period, this translates to roughly 20
minutes if blocks are found on schedule [7].

On the Bitcoin network, the average transaction time is 1 hour as long as the
mempool is not congested. During times of heavy transactions on the Bitcoin
blockchain, transfers with higher fees paid are prioritized while transfers with lesser fees
remain in the mempool. If too low of a fee is paid on the Bitcoin network, a transfer can
remain in the mempool for up to 3 days [9] before the transfer can be rebroadcast if the
mempool remains congested due to Bitcoin’s static 1MB block every 10 minutes [1].
This can be highly problematic for the end user. Thanks to dynamic block sizing, as the
median block size increases on the Solo network, the block size will dynamically
increase until all transfers are recorded on chain.

Adaptive Block Reward
The Solo Project has an adaptive reward based on historical data. The emission

formula slightly decreases block reward each block as a function of all coinbase
transaction amounts previously generated. Reward for blocks 1-88,000 based on a
speed factor per minute of 22, resulting in a reward ranging from 549.755797504 to
548.315910839. After the community voted prior to block 88,0001 the block reward was
increased via a hard fork so that both high and low powered machines may participate
in the network for the long run. Reward for blocks 88,001 and greater based on a speed
factor per minute of 25, resulting in a reward starting at 4,386.527155990 at block
88,001. Blocks 227001 and greater have a block time of 20 seconds, the reward was
reduced to maintain a speed factor per minute of 25, resulting in a reward starting at
1414.513079344 at block 227001.

Uncle blocks receive a total reward of 155% of what would have been the mined

block reward for the same block; Reward is split 50% to Uncle, 105% to Mined Block.
See the latest block coinbase transaction amount for the current block reward. Solo's
emission schedule is slower than bitcoin and does not include disruptive halving events.

Funding
All project related infrastructure costs, bounties, marketing costs and listing fees

have been paid out of personal funds, with no ICO and no crowd funding.

Premine and Early Contributions
Solo is a continuation of a side project started by NERVA developer ​angrywasp

and included a zero block (premine) reward of ~70,368, representing 0.00038% of the
total supply. At block 66001 a hard fork was activated, after this time the founder no

longer participated in development. At the time of the fork ~36,318,207 coins had been
minted representing ~0.196% of the total supply.

As of block 256000 (April 17, 2019) the current supply was ~689,220,912

representing 3.7% of the total supply. The current supply can be found using the
command print_coinbase_tx_sum in the daemon command line.

SECOR (Simple Extended Consensus Resolution)
A key feature of Solo is the implementation of Masari's Simple Extended

Consensus Resolution (SECOR, AKA Uncle Mining) [3]. SECOR further secures the
network by reattaching otherwise orphaned blocks on top of the longest chain. By
activating SECOR, faster block times can be achieved without the use of master nodes,
DAG or some other centralized solution. Faster block times result in more transaction
throughput making the blockchain more scalable.

Alternate chains are temporary disagreements about the longest chain, it

happens in every cryptocurrency and with 20 second block times it happens frequently.
This happens when there is a slight delay in sending signals to the entire network, the
shorter the block time the larger effect the lag has.

Without alternate chains there can not be an uncle block mined. If two miners
find blocks within the same time window instead of dropping one, the solution is added
to the chain as an uncle block. The miner producing the uncle block is rewarded 50% of
the calculated block reward they would have received for that block. Alternate chains
with lower difficulty and/or outside of the window will stay in memory until solod is
restarted but the only alternate chains that meet certain requirements are added to the
main chain via an uncle mined.

More information about SECOR can be found in the Masari SECOR whitepaper [3].

The CN-IO Proof of Work Algorithm

In this section of the Solo whitepaper, changes of Cryptonight-IO vs NERVA's
CN-Adaptive v1 [6] will be explained. A technical understanding of the Cryptonight hash

algorithm, NERVA’s CN-Adaptive v1 hash algorithm, and C++ programming is
assumed.

Basic Overview

The daemon uses block hashes from previous blocks to generate an
unpredictable dataset which is then used to manipulate the data in the scratchpad. This
data manipulation occurs after the scratchpad is first populated with data, before the
AES mixing function is performed.

CN-IO Proof of Work Goals and Restrictions

CN-IO strengthens the solo CPU mining goals of Solo, by making it a
requirement to have a local blockchain copy. Each of those possible combinations can
be performed up to 64 different ways via the variable AES iteration count. CN-IO
performs well across all CPUs with AES-NI instruction support due to the low L3 cache
requirement per thread (128KB per thread). Compared to other similar algorithms this
allows for more threads to be run on lower to mid range CPUs as a scratchpad size of
1-2MB+ can leave a lower end CPU unable to run as many threads as the available
logical processors.

The blockchain must be synced one block at a time, so that the previous block
hash can be read to generate the required information to randomize the scratchpad.
The cost of this restraint is sync speed. For convenience, a verified blockchain
snapshot is provided by the Solo Project core team for users that wish to reduce the
initial sync time. A current link to a recently verified blockchain snapshot can always be
found on our website at ​https://www.minesolo.com/​ .

It is also important to distinguish that CN-IO is not exactly a modification to the
CN Variant 1 as used by Monero. CN-IO creates a secondary algorithm which
generates a random dataset that is applied to change the scratchpad buffer to
change the resulting hash produced by Cryptonight. As a result, CN-IO could be applied
to any cryptonight variant that may seek to promote Solo CPU mining as it's preferred
method of distribution.

The most optimized version of CN-IO is always available to the public as soon as
it has been tested. If optimizations may be made to the algorithm, constructive criticism

https://www.minesolo.com/

on the Solo Discord (​https://discord.minesolo.com​) and merge requests are welcome.
The goal of CN-IO is to keep the barrier of entry low to all miners, including those with
only a single low to mid range CPU. Compare this to Monero, which included a
potentially crippled hashing algorithm to the public [10].

Detailed Overview

Solo's hash algorithm, Cryptonight IO (CN-IO) is based on Cryptonight-v1 with
the following amendments:

- Scratchpad reduced from 2MB to 128KB
- Reduce AES mixing function iterations from 0x80000 to 0x40000
- Per block variation of the AES mixing function iteration count between 0x40000 -
(0x40000 + 1024)

CN-IO makes the following changes to Cryptonight-v1:

- Reduce AES mixing function iteration variation from 1024 to 64

CN-IO maintains the basic functionality of v1 and provides a secondary algorithm
to manipulate the data in the scratchpad, and resulting hash, further randomizing the
algorithm each block. This data is calculated before the Cryptonight hash algorithm is
run and applied to the scratchpad after it is initialized, directly before the variable
iteration AES mixing function.

The scratchpad used in Solo's hashing algorithm is 128KB.
Of that, 32 bytes are manipulated via a non-predictable algorithm, which is calculated at
the start of each block. A broad overview of of the steps looks like:

- Get hash of last block
- Bit shift arbitrary bytes in the hash to generate 4 uint8_t values
- Read the block hashes at these locations, reading back from the current height
- Convert the 4 block hashes into a single 128 byte buffer
- Generate arrays of scratchpad byte indices and randomization values from that buffer
- Apply that randomization data to the scratchpad buffer

https://discord.minesolo.com/

Step 1: Get a list of old block hashes from the blockchain

Step 1 involves fetching the hashes of 4 previous blocks in the blockchain.
The process consists of the following steps:

- Retrieve a previous block hash. In this case we take block data from blocks height -
CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW_V1 as an arbitrary value
- XOR 4 pairs or arbitrary bytes together to generate 4 new uint8_t values (designated
b1 - b4)
- Retrieve the block hash at the height - bytes value. Example: height - b1, and be sure
to use data from the alt_chain on spawned alt_chains.
- Do this for each 4 values

The last block is XOR'd together like so:

text

01234567890123456789012345678901

| |​ ​| |​ ​| |​ ​| |

b1 ​ ​b2 ​ ​b3 ​ ​b4 ​ ​b1 ​ ​b2 ​ ​b3 ​ ​b4

Code:

cpp

#define CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW_V1 5

uint64_t ht = height - CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW_V1​;

crypto:​:hash h0 = ​bc->get_block_id_by_height(ht, ​alt_chain)​;

uint8_t ​b1 ​= (uint8_t)(h0​.data​[​0​] ^ h0​.data​[​16​])​;

uint8_t ​b2 ​= (uint8_t)(h0​.data​[​4​] ^ h0​.data​[​20​])​;

uint8_t ​b3 ​= (uint8_t)(h0​.data​[​8​] ^ h0​.data​[​24​])​;

uint8_t ​b4 ​= (uint8_t)(h0​.data​[​12​] ^ h0​.data​[​28​])​;

crypto:​:hash h1 = ​bc->get_block_id_by_height(ht ​- ​b1, ​alt_chain)​;

crypto:​:hash h2 = ​bc->get_block_id_by_height(ht ​- ​b2, ​alt_chain)​;

crypto:​:hash h3 = ​bc->get_block_id_by_height(ht ​- ​b3, ​alt_chain)​;

crypto:​:hash h4 = ​bc->get_block_id_by_height(ht ​- ​b4, ​alt_chain)​;

At the end of the first step, we then have 4 block hashes to be used in step 2. By
using the last block hash, we have an unpredictable method of retrieving block hashes
which results in a different set of hashes each block. Also, since the last block hash is
not known until the new block begins mining, there is no way to precalculate the
information and all miners get the last block hash at the same time.

There is one drawback to this method however and it is quite significant. Since
each block needs the hash of the previous block to calculate the hash algorithm,
blockchains must be synced one block at a time. When attempting to sync more than
one block at a time, the previous block hash is not stored on disk and the hash to verify
the block cannot be calculated. This results in longer sync times, and a higher load on
nodes providing the blockchain data.

Step 2: Copy the block hashes to a single 128 byte buffer

In step 2 we convert the 4 32 byte hashes into a single 128 byte buffer. This is
done simply by interleaving the 4 hashes together in 4 byte chunks, which can be
visualized as

text

h1 0000 0000 0000

h2 |​ 1111 ​|​ 1111 ​|​ 1111
h3 ​|​ ​|​ 2222 ​|​ ​|​ 2222 ​|​ ​|​ 2222
h4 ​|​ ​|​ ​|​ 3333​|​ ​|​ ​|​ 3333​|​ ​|​ ​|​ 3333
 ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|​ ​|
 000011112222333300001111222233330000111122223333....

Code:

cpp

int j = 0;

for (int i = 0; i < 128; i += 16)

{

 std::memcpy(cn_bytes + i, h1.data + j, 4);

 std::memcpy(cn_bytes + i + 4, h2.data + j, 4);

 std::memcpy(cn_bytes + i + 8, h3.data + j, 4);

 std::memcpy(cn_bytes + i + 12, h4.data + j, 4);

 j += 4;

}

This buffer is then used to generate a struct `random_values` in step 3

Step 3: Generate the random values for the algorithm

Now we are at the step where we will generate the random values that will randomize
the scratchpad data.
First the layout of the `random_values` struct (defined in src/crypto/hash-ops.h):

cpp

#define RANDOM_VALUES 32

enum​ {
 NOP = ​0​,
 ADD,

 SUB,

 XOR,

 OR,

 AND,

 COMP,

 EQ

};

typedef​ ​struct​ ​randomizer_values
{

 ​//list of bitwise functions to perform from the list above
 ​uint8_t​ operators[RANDOM_VALUES];
 ​//list of scratchpad locations to perform the bitwise operations on
 ​//this has to be uint32_t as the scratchpad is too long to store
every possible index in uint16_t

 ​uint32_t​ indices[RANDOM_VALUES];
 ​//a list of values to perform the bitwise operations with
 ​int8_t​ values[RANDOM_VALUES];
} random_values;

As you may deduce, each array is 32 values long. Each index in these arrays functions
in a group

- Scratchpad index - `indices[n]`: This is the index in the scratchpad the byte
manipulation will occur
- Operator - `operators[n]`: A value in the range of 0-7 corresponding to the enum to
determine which function is performed
- Value - `values[n]`: The operand of the bitwise operation defined by `operators[n]`

The easiest way to describe what the operators are is with the code

cpp

void randomize_scratchpad(random_values *r, uint8_t *scratchpad)

{

 ​if​ (r == ​NULL​)
 ​return​;
 ​for​ (​int​ i = ​0​; i < RANDOM_VALUES; i++)
 {

 ​switch​ (r->operators[i])
 {

 ​case​ ADD:
 scratchpad[r->indices[i]] += r->values[i];

 ​break​;
 ​case​ SUB:
 scratchpad[r->indices[i]] -= r->values[i];

 ​break​;
 ​case​ ​XOR​:
 scratchpad[r->indices[i]] ^= r->values[i];

 ​break​;
 ​case​ ​OR​:
 scratchpad[r->indices[i]] |= r->values[i];

 ​break​;
 ​case​ ​AND​:
 scratchpad[r->indices[i]] &= r->values[i];

 ​break​;
 ​case​ COMP:
 scratchpad[r->indices[i]] = ~r->values[i];

 ​break​;
 ​case​ EQ:
 scratchpad[r->indices[i]] = r->values[i];

 ​break​;

 }

 }

}

After this, 32 bytes of the scratchpad are altered, the salt is derived from the data of a
random set of blocks, and the rest of the Cryptonight algorithm completes.

Conclusion

The Solo Project has a CPU favourable Proof of Work hashing algorithm that
requires a fully synced copy of the blockchain on each mining node. As such it
promotes decentralization as all mining nodes are full nodes, rather than clients to a
decreasing number of full nodes as nethash rises (a common scenario seen in current
large blockchain networks). As the network grows, the developers of the Solo project
plan to bring block times down to 15 seconds. This will lower the difficulty of finding
blocks for low hashrate miners.

The Solo Project aims to remain a fast, scalable, private cryptocurrency with a

widely distributed blockchain for decades to come. The economy is designed with a
block reward large enough to keep even the smallest miners interested in mining during
the long run. As the number of miners online increases, the distribution of the full
blockchain increases which is a tenet of decentralization. Fee levels will remain low, and
the number of coins used in everyday transactions will be entire coins not fractions.
Contributors to the Solo project feel that this is very important for mainstream adoption,
as working with fractions of a coin appears to be a mental block for many people getting
into larger blockchain projects as valuation has dramatically risen over the years.
These issues are at the core of what the Solo Project aims to resolve.

References
[1] ​https://bitcoin.org/bitcoin.pdf
[2] ​https://cryptonote.org/whitepaper.pdf

https://bitcoin.org/bitcoin.pdf
https://cryptonote.org/whitepaper.pdf

[3]​https://nbviewer.jupyter.org/github/masari-project/research-corner/blob/master/secor/
secor.pdf
[4] ​https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
[5] ​https://eprint.iacr.org/2017/1066.pdf
[6] ​https://bitbucket.org/snippets/nerva-project/keG5G8/the-cn-adaptive-v2-algorithm
[7]​https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by
%20SerHack%20and%20Monero%20Community.pdf
[8] ​https://github.com/zawy12/difficulty-algorithms/issues/3
[9]
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-with-too-low-fees-are-my-c
oins-lost-forever-7a865e2e45ba
[10] ​https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html

https://nbviewer.jupyter.org/github/masari-project/research-corner/blob/master/secor/secor.pdf
https://nbviewer.jupyter.org/github/masari-project/research-corner/blob/master/secor/secor.pdf
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://eprint.iacr.org/2017/1066.pdf
https://bitbucket.org/snippets/nerva-project/keG5G8/the-cn-adaptive-v2-algorithm
https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by%20SerHack%20and%20Monero%20Community.pdf
https://masteringmonero.com/book/Mastering%20Monero%20First%20Edition%20by%20SerHack%20and%20Monero%20Community.pdf
https://github.com/zawy12/difficulty-algorithms/issues/3
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-with-too-low-fees-are-my-coins-lost-forever-7a865e2e45ba
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-with-too-low-fees-are-my-coins-lost-forever-7a865e2e45ba
https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html

